
14 - Set Data Structures
Joseph Afework
CS 241

Dept. of Computer Science
California Polytechnic State University, Pomona, CA

Agenda

● Intro
● Operations
● Implementation
● Performance

Reading Assignment

● Read Chapter 28
○ Chapter 28 (Read about: Sets)

Sets

● A set is an unordered collection of objects.
● Builds on the mathematical concepts: (Remember CS 130)

○ Union
○ Subtraction
○ Difference (Subtraction)
○ Subset

Set Rules

Rules:

1. Elements cannot be repeated (unique)
2. Elements in the set usually share some sort of logical grouping

(organization).

Example

● Students at Cal Poly Pomona
○ Unique members?
○ Logical organization?

● Students currently taking CS 241
○ Unique members?
○ Logical organization?

Empty Set

● If it makes sense for a set to contain 0 members, it is said to be an empty
set or null set.

● Example:
○ If CS 241 is not offered, then the set won’t contain any members.

Set Operations

1. Union
2. Subtraction
3. Difference (Subtraction)
4. Subset

Note: Behavior is just like the mathematical definition of sets...

Union

Union: Combine two or more sets into a new set that contains all of the values
from the original sets in the new set.

Note: Generally duplicates are ignored (include only 1 copy in the new set)

Intersection

Intersection: Construct a new set with only the elements common to the sets
being evaluated.

Note: Generally duplicates are ignored (include only 1 copy in the new set)

Difference (Subtraction)

Difference: Given two sets, A and B, construct a new set C which contains the
elements in Set A that do not exist in Set B.

Note: Generally duplicates are ignored (include only 1 copy in the new set)

Subset

Subset: Given two sets, A and B, determine if all of the elements in A are
already present in B. If so, then A is a subset of B.

Note: Generally duplicates are ignored (include only 1 copy in the new set)

Implementation

Like more ADT, it is possible to implement a set data structure using different
data structures.

1. Use an array or array list
2. Use a tree
3. And more...

Array Based Set: Insertion

Insert(Set A, element B):

Loop through elements in A (let e = element)

If e equals B

return // Element exists no need to insert

A[i] = B;

Runtime: O(speed of lookup) …. Speed of look up in an array is O(n)... O(n)

Array Based Set: Search

Search(Set A, element B):

Loop through elements in A (let e = element)

If e equals B

return // Element found

return null // Element not found

Runtime: O(speed of lookup) …. Speed of look up in an array is O(n)... O(n)

Array Based Set: Delete

Delete(Set A, element B):

Loop through elements in A (let e = element)

If e equals B

Int i = indexOf(e)

A[i] = null

Swap last element with A[i] // move null to end of array

return // Element removed

return null // Element not found

Runtime: O(speed of lookup) …. Speed of look up in an array is O(n)... O(n)

BONUS - Array Based Set: Union

Union(Set A, Set B):

Set C = Set A

Loop through elements in B (let e = element)

If e does not exist in A, add it to set C

Return set C

Runtime: O(n * speed of lookup) …. Speed of look up in an array is O(n)... O(n2)

Array Based Set Performance

Can we do better?

Set (Array) Worst Case

Insert O(n)

Delete O(n)

Search O(n)

Union O(n2)

Remember

Self Balancing Trees (Faster lookup)?

● AVL Tree
● Red-Black Tree

AVL Based Set: Insertion

Insert(Set A, element B):

Insert B into tree using AVL rules, ignore if value already exists.

Runtime: O(speed of insertion) …. Speed of AVL insertion is O(log(n))

AVL Based Set: Search

Search(Set A, element B):

Perform Binary Search in AVL tree

Runtime: O(speed of search) …. Speed of search is O(log(n))

AVL Based Set: Delete

Delete(Set A, element B):

Delete from AVL tree using AVL rules

Runtime: O(speed of deletion) …. Speed of look up in an array is O(n)... O(log(n))

BONUS - AVL Based Set: Union

Union(Set A, Set B):

Set C = Set A

Loop through elements in B (traversal)

Insert B into tree using AVL rules, ignore if value already exists.

Return set C

Runtime: O(n * speed of insertion) …. Speed of AVL insertion is O(log(n))... O(n * log(n))

AVL Based Set Performance

Set (AVL) Worst Case

Insert O(log(n))

Delete O(log(n))

Search O(log(n))

Union O(n*log(n))

Array Backed Set vs AVL Backed Set

Set (Array) Worst Case (AVL) Worst Case

Insert O(n) O(log(n))

Delete O(n) O(log(n))

Search O(n) O(log(n))

Union O(n2) O(n*log(n))

References

https://www.slideshare.net/Tech_MX/set-data-structure-i

http://www.cs.bham.ac.uk/research/projects/poplog/paradigms_lectures/lect
ure16.html

http://blog.benoitvallon.com/data-structures-in-javascript/the-set-data-structur
e/

https://msdn.microsoft.com/en-us/library/aa289153(v=vs.71).aspx

http://web.cs.wpi.edu/~cs2102/common/notes-d13/bsts-and-avls.html

https://www.slideshare.net/Tech_MX/set-data-structure-i
https://www.slideshare.net/Tech_MX/set-data-structure-i
http://www.cs.bham.ac.uk/research/projects/poplog/paradigms_lectures/lecture16.html
http://www.cs.bham.ac.uk/research/projects/poplog/paradigms_lectures/lecture16.html
http://www.cs.bham.ac.uk/research/projects/poplog/paradigms_lectures/lecture16.html
http://blog.benoitvallon.com/data-structures-in-javascript/the-set-data-structure/
http://blog.benoitvallon.com/data-structures-in-javascript/the-set-data-structure/
http://blog.benoitvallon.com/data-structures-in-javascript/the-set-data-structure/
https://msdn.microsoft.com/en-us/library/aa289153(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/aa289153(v=vs.71).aspx
http://web.cs.wpi.edu/~cs2102/common/notes-d13/bsts-and-avls.html
http://web.cs.wpi.edu/~cs2102/common/notes-d13/bsts-and-avls.html

